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Abstract
The systematic investigation of the phenotypes associated with genotypes in model organisms holds the promise of
revealing genotype^phenotype relations directly and without additional, intermediate inferences. Large-scale pro-
jects are now underway to catalog the complete phenome of a species, notably the mouse. With the increasing
amount of phenotype information becoming available, a major challenge that biology faces today is the systematic
analysis of this information and the translation of research results across species and into an improved understanding
of human disease.The challenge is to integrate and combine phenotype descriptions within a species and to system-
atically relate them to phenotype descriptions in other species, in order to form a comprehensive understanding
of the relations between those phenotypes and the genotypes involved in human disease.We distinguish between
two major approaches for comparative phenotype analyses: the first relies on evolutionary relations to bridge the
species gap, while the other approach compares phenotypes directly. In particular, the direct comparison of pheno-
types relies heavily on the quality and coherence of phenotype and disease databases. We discuss major achieve-
ments and future challenges for these databases in light of their potential to contribute to the understanding of
the molecular mechanisms underlying human disease. In particular, we discuss how the use of ontologies and auto-
mated reasoning can significantly contribute to the analysis of phenotypes and demonstrate their potential for
enabling translational research.
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The use of animals as models for human disease is one

of the most important paradigms of biomedical re-

search. Historically, these have been of central import-

ance to the study of human disease and treatments, and

are based on the now well-established premise of evo-

lutionarily conserved pathogenetic mechanisms. The

comparative approach has also long been an important

method for the study of problems in fundamental

biology, and has been made even more powerful by

the resources of modern genomics, where it can be

combined with phylogenetic analysis. Our under-

standing of gene function can be informed by the

comparison of mutant and ‘wild-type’ phenotypes in

a single organism as well as by the comparison of the
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phenotype consequences of mutation of a particular

gene in species A with those of a mutation of the

evolutionarily homologous gene in species B. The

increasing importance of these cross-species compari-

sons is becoming ever more apparent as large-scale

mutation screens (or their epigenetic analogs using

interfering RNAs) are conducted in model organisms,

particularly mice, zebrafish, Drosophila and

Caenorhabditis elegans. Conservation of gene function

across species is strongly supported by similar pheno-

type consequences of loss-of-function mutations in

orthologous genes in both species [1] and functional

replacement of mouse genes by their human counter-

parts [2, 3] as well as the remarkable phylogenetic

conservation of patterns of gene expression [4].

There are profound challenges in relating disease

processes in humans and other animals, partly as a

consequence of intrinsic variation in normal and

pathobiology between species, and partly through

historical, conceptual and pragmatic differences be-

tween clinical and lab approaches to describing dis-

eases and phenotypes. Many such challenges are

being faced head-on by those working with animal

models of human disease, specifically with regard to

inbred strains of laboratory mice. Robert Koch’s ex-

hortation, ‘Gentlemen, never forget that mice are

not human beings’ [5], reminds us that although use

animal models of human disease can be extremely

valuable, knowledge of comparative anatomy, path-

ology and pharmacology are needed to bridge the

species gap. While genetic models often faithfully

reflect the major features of human diseases, differ-

ences in phenotypes between mice and humans with

mutations in orthologous genes can be as informative

on the biological processes as those where there is a

good match. Several diseases were first defined in

mice and later in humans [6, 7] and more recently

we have seen examples where apparent differences

between mouse and human phenotypes were

resolved with the realization that the clinical pheno-

type description in humans is incomplete and the

mouse phenotypes are actually seen in the human

disease [8]. Here, the mouse phenotype informs

and expands the human clinical picture and provides

new insights into the pathogenetic mechanism.

PREDICTING GENE FUNCTION
FROMMUTANT PHENOTYPES
ANDDISEASES
We have been remarkably unsuccessful at being able

to predict gene function at a physiological or whole

organism level from gene sequence alone, and our

understanding of gene function must ultimately

depend on experimental manipulation of the genome

and assessment of its consequences. The mouse has

been a particularly successful organism in this regard

as a consequence not only of well-characterized

natural genetic variation, but also the ready ability

to make loss-of-function, gain-of-function and

conditional mutations in the mouse genome.

Consequently, the mouse has proved to be one of

the most powerful model organisms in the modern

approach to understanding human disease [9–11],

providing insights into normal and pathobiology

and gene function as well as serving as preclinical

tools for drug discovery and efficacy testing [12–16].

Data from the mouse genome database (MGD)

[17] currently (June 2011) lists 14 820 genes with

mutant alleles in mice and 11 210 in mouse embry-

onic stem (ES) cell lines alone. Despite this rich gen-

etic resource, we have at best partial phenotype

information on only 8200 of its approximately

22 000 protein-coding genes. Even at the level of

protein class or Gene Ontology (GO) [18] molecular

function annotation, we only have 13 000 genes

with any experimentally based functional annota-

tions. Of the 8600 GO ‘molecular function’ terms

most have very few associated gene products and

only 7000 genes have ‘biological process’ annotations

in the mouse.

In order to maximize leverage experimental data

from model organisms to understand gene function,

we ideally need to have rich phenotype–genotype

annotations for as many genes as possible, and to

represent that information in a way that enables the

biologically meaningful integration and comparison

of data between species. Investigators wishing to

make maximum use of phenotype data from humans

and model organisms currently face two problems

which we address in this commentary.

First, the incomplete and incoherent description

of phenotypes in different organisms impairs system-

atic analyses of phenotype information. In particular,

partial descriptions of different aspects of the pheno-

type for different alleles within a species, or for

orthologs from different species, need to be com-

bined to form the complete picture of the pheno-

types associated with mutations in a gene.

Secondly, the lack of computationally tractable

methods for describing and analyzing phenotypes

across multiple species prevents large-scale auto-

mated analyses.
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PHENOTYPES FOR EVERYGENE;
HUMANANDMOUSE
PHENOTYPE DATA SETS
A limitation of the phenotype information that we

can gather from the published literature is that it is

based on a ‘you get what you look for’ approach.

This, together with background strain effects and en-

vironmental factors, may contribute to the frequently

reported absence of discernable phenotypes in

mutant mice, in addition to the often-suggested ‘re-

dundancy’ in the genome [19, 20]. However, the

degree of pleiotropy which we intuitively expect sug-

gests that if one looks in the right place at the right

time one will more often than not find a phenotype

consequence of genetic mutation. To quote Mario

Capecchi on missing phenotypes: ‘. . . you have to

look in the right place because every gene has to

have a function’ [21].

It now seems highly likely that comprehensive

physiological, behavioral and structural phenotyping

will reveal discernable phenotype change for many,

if not all, null mutations. This is borne out by the

phenotype effects discovered in a recent targeted

study of mutants in 472 transmembrane and secreted

proteins from Tang et al. [22], where 89% of mice

showed phenotypes in at least one organ system

and 57% in two or more based on measurement

of 85 assays spanning immunology, metabolism, car-

diology, oncology, growth, ophthalmology, neuro-

biology, pathology, reproduction, viability and

embryonic lethality. While this suffers from some

inevitable systematic biases [23], nevertheless, it sug-

gests that the phenotypes are out there as long as you

look carefully.

None of the existing human or mouse phenotype

data sets is currently optimal for cross-species analysis.

Human data are not coded systematically between

different resources, and databases are not designed

for interoperability [24]; however, the range of

phenotype information available is extremely broad

and deep. The recent commitment of online

Mendelian inheritance in man (OMIM) to cross-

reference to the human phenotype ontology (HPO

[25]; see below), elements of morphology terms [26],

International Classification of Diseases (ICD) and the

mammalian phenotype ontology (MPO; [27]) is a

welcome move to standardize the structure of the

clinical synopses and make them available to search-

ing and analysis [28]. This will hopefully be the first

of similar moves to standardization of human pheno-

type description in phenotype–genotype databases.

Recent examination of the databases containing

human phenotype data by Oti et al. [29], prompted

a strong argument that integration of OMIM [28],

Possum [30] and Orphanet [31] would generate a

much more powerful resource. This depends on

the implementation of a method of standardization

for human phenotype data and development of a

formal model to describe elements of disease such

as phenotype frequency, desirables that are discussed

in the next section.

In contrast, for the mouse we have a very hetero-

geneous data set in MGD with various degrees of

depth and annotation density, though it is all coded

and structured in ways which allow for powerful

analysis. The incompleteness of the mouse pheno-

type data sets also manifest in a way which underlies

the difference between clinical practice and labora-

tory phenotyping. In clinical medicine, a complete

picture is built up with a summative, often etiologic-

al diagnosis, whereas information on the pathobio-

logical context of individual findings is often lacking

in the mouse due to incomplete data.

In addition to the established uses of mouse

phenotype data discussed above, model organism

phenotype data are now finding important uses in

the exploration and validation of human genome-

wide association studies (GWAS) and in the dissec-

tion of human copy number variation (CNV) data

[32, 33]. These applications have depended on the

development of appropriate tools and informatics for

capturing and analyzing phenotype data discussed

below. Currently, the data used for the mouse are

the very high quality manually curated genotype–

phenotype data set from the mouse genome inform-

atics (MGD) database, but for reasons discussed by

Kitsios et al. [32] the utility of these data are limited

by its derivation from hypothesis-driven experi-

ments. Kitsios et al. analyzed human GWAS data

from the National Human Genome Research

Institute (NHGRI) catalog [34] comparing human

against mouse phenotype data and concluded that

while there is an excellent concordance between

human and mouse phenotypes associated with

orthologous loci, a significant number of GWAS as-

sociations do not have mouse mutants annotated to

equivalent phenotype descriptors—in this case MPO

terms—and suggest that the problem is likely to get

worse as the depth of human phenotype determin-

ation increases with time. This is almost certainly due

to the fact that curated mouse data are derived from

reports of hypothesis-driven science, often
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incomplete, and driven by the interests and compe-

tence of the investigators, and underlines the need

for systematic, agnostic phenotyping of the mouse

genome. Such systematic high-throughput pheno-

typing is now underway as part of the International

Mouse Phenotyping Consortium (IMPC) [35],

which aims to generate system-wide phenotypes

for null mutants in all the approximately 22 000 pro-

tein sequence-associated genes in the mouse by 2021

(http://www.mousephenotype.org/).

DESCRIBING PHENOTYPE AND
DISEASE DATA
The lack of a computationally tractable method for

comparing phenotypes in different species is a cur-

rent fundamental weakness. Not only does each of

the model organisms have its own vocabulary for

describing the phenotype consequences of mutation,

vocabularies often tied to the particular conceptual-

izations of the anatomy or physiology of the organ-

ism, but worse, these descriptions are usually

recorded in the literature as free text. Free text is

highly expressive, but it does not help a computer

program recognize the fact that there is likely to be a

significant connection between the mutations that

result in ‘small’ mice, ‘dwarf’ Drosophila, ‘short’ fish

and ‘reduced stature’ humans. Two types of ap-

proaches have been made to solving the cross-species

problem.

The first makes use of a ‘translation layer’ between

phenotype descriptors. This translation layer may

be either a direct mapping, based on automated,

manual or human-assisted automatic lexical map-

ping, or indirect mapping using an intermediate

framework. The intermediate framework may be a

network or terminology such as Unified Medical

Language System (UMLS) [36] or Medical Subject

Headings (MeSH), or in recent approaches may

make the use of the semantic information in a

phenotype ontology to bridge species-specific ontol-

ogies using computable logical definitions of pheno-

type classes.

The second approach makes use of gene orthol-

ogy and is predicated on the assumption that ortho-

logous genes are involved in orthologous pathways.

These genes give rise to orthologous phenotypes—

‘phenologs’, as coined by McGary et al. [37]. In their

study McGary et al. [37] use orthology to identify

overlapping gene sets between species and infer

that the associated phenotypes are in some way

homologous. While there is considerable evidence

to suggest that at least in closely related genera,

such as mouse and human this is true, this assumption

is not needed for the phenotype-alone methods of

approach 1. Orthology has also been exploited by

Espinosa and Hancock [38] in order to map mouse

model phenotype annotations onto OMIM diseases

to develop a phenotype–genotype network amen-

able to graphical analysis and is used for integration

of phenotype data in Phenomic DB [39], where

native text phenome data are captured into a cross-

species database from OMIM and model organism

databases.

PHENOTYPEONTOLOGIESAND
TERMINOLOGIES
Automated text mining from the literature and lex-

ical methods for phenotype term matching has been

used with some considerable success in establishing

standardized gene–phenotype correlation data sets for

humans. For example, van Driel et al. used MeSH to

mine OMIM and established that similarity between

phenotypes reflected underlying biological modules

of interacting functionally related genes, proposing

the modularity of phenotypes [40, 41]. Butte and

Kohane have used UMLS and MeSH to extract in-

formation from text annotations of Gene Expression

Omnibus (GEO) to establish human disease–geno-

type relations and it is clear that UMLS, which is a

unifying resource for medical terminologies, is a

powerful tool in integrating vocabularies and ex-

tracting information from unstructured text [42].

The development of the MPO in 2004 provided

the first formal ontology for the description of mam-

malian phenotypes. The combination of a well-

formed ontology and the manual curation to the

ontology carried out by Mouse Genome

Informatics (MGI) curators has meant that the

mouse is still probably the best phenotypically anno-

tated vertebrate. Several strategies for mapping of

MPO to human phenotype terms have been de-

veloped. Kitsios et al. [32] employed a manually

guided automated lexical mapping of the free-text

phenotype terms used in the NHGRI GWAS

browser and supplemented with MeSH used

mouse phenotypes to assist in the prioritization of

GWAS candidate genes. Burgun et al. [43] used an

approach involving lexical matching to map MPO to

UMLS, which then permits interrogation of OMIM

and other clinical data sets using one of the more

Analysis of phenotype knowledge in human diseases 261



than 100 terminologies integrated into UMLS.

Problems with disambiguation of gene names, con-

ceptual dissonance between the terminologies and

semantic inconsistency within MPO show some of

the drawbacks with this approach. Nevertheless, the

possibility of mapping a large number of terminolo-

gies via UMLS in a single mapping is very powerful.

This approach can be used as a way of identifying

equivalent terms in different terminologies for both

intra- and cross-species data integration.

To a great extent the almost exclusive use of lex-

ical matching for knowledge extraction and cross-

species phenotype bridging in phenotype analysis

was determined by the lack, until 2008, of a

widely applicable HPO [25]. Such an ontology could

be used in direct annotation or computational

markup and data extraction from documents and

on-line resources such as OMIM. The existence

of controlled vocabularies for human phenotypes

(for example, those used in the London

Dysmorphology Database (LDDB), Orphanet and

POSSUM), has been extremely helpful. However,

the harmonization of these vocabularies is an on-

going task and until recently it has not been possible

to integrate or co-analyze annotation date from these

sources. Additional formal nomenclatures are being

developed, notably for dysmorphology [44].

CROSSINGTHE SPECIES GAP
The problems associated with crossing the pheno-

type ‘gap’ between different ways of describing

phenotypes in different genera are discussed in

Schofield et al. [45]. The issues are not simply those

of establishing straight mappings, though that is dif-

ficult enough, but where there are large evolutionary

distances between species, bridging to the most

closely related phenotypes. For example, cardiac de-

fects such as the tetralogy of Fallot are closely related

in human and mouse, but while the syndrome is

impossible in fish due to the different anatomical

structure of the fish heart, other cardiac morpho-

logical defects may well be the consequence of dys-

regulation of the same morphogenetic processes in all

three organisms. It is useful to include such related

defects in the analysis. This requires a way to provide

rich, explicit and consistent descriptions, so that auto-

mated systems are able to process and distinguish the

meaning of their terms and use them to infer new

information.

The problems with the use of lexical matching

and lack of a formal ontology for human phenotypes

have now been resolved with the much needed de-

velopment of the HPO [25]. We now have pheno-

type ontologies for the mouse, yeast, worm and fly,

all of which are available from the Open Biological

and Biomedical Ontology (OBO) foundry (http://

www.obofoundry.org/) [46]. Lexical cross-mapping

of MPO and HPO using UMLS as a translation layer

has been reported [47], but this suffers from the same

problems reported by Burgun and co-workers. In

recent years an approach has been developed to cir-

cumvent the species specificity of the phenotype

ontologies using matching of logical definitions for

classes within each ontology rather than text. The

definitions utilize species-agnostic ontologies such

as GO to provide a common semantic level at

which they can be integrated into a single framework

[48, 49] and a post-composition strategy termed

Entity–Quality (EQ).

Rather than using a precomposed ontology such

as HPO, phenotypes may be described using the EQ

formalism [49]. In the EQ method, a phenotype is

characterized by an affected Entity (from an anatomy

or process ontology) and a Quality [from the

Phenotype and Trait Ontology (PATO)] that speci-

fies how the entity is affected [48]. The affected

entity can either be a biological function or process

as specified in GO, or an anatomical entity. The Zfin

database uses the EQ method exclusively to capture

phenodeviance [50], but these statements may be

used as logical definitions for classes within a pheno-

type ontology. While the ontologies used to write

the definitions (cross-products) are largely species ag-

nostic, such as GO, CheBI, MPATH [51], anatom-

ical entities are almost exclusively specified using a

species-specific anatomy ontology, for example, the

Foundational Model of Anatomy (FMA), the Mouse

Adult Anatomy (MA) or the Zebrafish Anatomy

(ZFA), and to make mappings between these verte-

brate anatomies the metazoan, species-independent

UBERON ontology is used in constructing anatom-

ically based cross-products [52]. Once their classes are

formally defined, phenotype ontologies may be

linked through common or related cross-product

definitions and striking concordances may be dis-

covered between the phenotypes of different species.

This method was successfully exploited by

Washington et al. [53] who annotated the pheno-

types of 11 gene-linked human diseases from

OMIM and computationally compared these with
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other ontology-based phenotype descriptions from

model organisms. They showed that, based on the

subsumption of classes in the ontologies and the fre-

quency of annotation, they could detect other alleles

of the same gene, other members of a signaling path-

way, and orthologous genes and pathway members

across species through the similarity of the pheno-

types, demonstrating a proof of principle for the EQ

approach.

More recently, a whole-phenome approach to

comparative phenomics was developed exploiting the

full semantic content of ontologies [54]. The method

requires the formalization of anatomy and phenotype

ontologies so that they can be integrated using the

parthood relation followed by the generation of a

single, unified and logically consistent representation

of phenotype data for multiple species annotated to

the species-specific phenotype ontologies within a

single semantically coherent framework, amenable

to automated reasoning [55]. The unified frame-

work, PhenomeNET, permits the use of phenotype

information alone to query (‘phenomeblast’) the

gathered phenotype annotations from OMIM and

the mouse, zebrafish, fly, yeast and worm model or-

ganism databases. The ontology contains more than

275 000 classes and more than a million axioms,

including classes for 86 203 complex phenotype an-

notations drawn from the model organism databases

and OMIM. A great advantage is that the ontology

can be regenerated to include new phenotype anno-

tations and future developments of all of the con-

stituent ontologies, and a tool to query the data has

been made available on http://www.phenome

browser.net/. This method is the first to be able to

allow automated reasoning over all of the phenotype

ontologies and the gathered ontologies involved in

the logical class definitions. It permits a simultaneous

survey and computation over all of the phenotype

data available from the main model organism and

human databases. The network can be used to suc-

cessfully identify orthologous genes through related

phenotypes, and genes involved in the same pathway

as well as genes giving rise to the same disease.

Development of PhenomeNET has allowed the

comparison of usefulness of the phenotype annota-

tions in the model organism databases and OMIM. It

is clear that the manual annotation of MGD repre-

sents a gold standard for literature annotation to a

precomposed phenotype ontology. In contrast, the

heterogeneity and in some case sparseness of anno-

tation in OMIM is problematical. Oti et al. found

that the under-annotation of diseases in OMIM is a

weakness in its ability to provide a resource for iden-

tifying animal models of OMIM diseases, and this ob-

servation could be confirmed with PhenomeNET.

The use of annotations in Orphanet, and particularly

the possibility of incorporating frequency data into

the ‘phenomeblast’, are important areas of research

to extend automated cross-species analyses of

phenotype information.

REQUIREMENTS FOR
INTEROPERABILITYANDLARGE-
SCALE ANALYSIS OF PHENOTYPES
To further facilitate and improve the automated ana-

lysis of the growing information about phenotypes,

three areas of research need to be addressed. First, the

documentation of phenotype information in scien-

tific databases and publications needs to be further

standardized. While species-specific phenotype onto-

logies are being applied in several model organism

databases, it is a major challenge to unify these

phenotype ontologies across species. The EQ ap-

proach based on the PATO ontology has been suc-

cessfully applied to several model organism databases

as well as to formally define classes in species-specific

phenotype ontologies. Moreover, PATO has been

demonstrated to support cross-species integration

and comparison. It would be desirable to further align

phenotype ontologies across species based on the

PATO framework, to improve mappings between

species-specific anatomy ontologies and to develop

new phenotype ontologies based on the PATO

framework so that ontologies immediately connect

to the existing web of cross-species phenotype

knowledge.

The second area requiring further development is

the establishment of an infrastructure for the repre-

sentation, processing and analysis of phenotype in-

formation. Large-scale reasoning over phenotypic

information enables highly expressive queries across

multiple domains, but is limited by the complexity of

phenotype descriptions. Modularization approaches,

efficient reasoning and reasoning servers may help to

allow access to phenotype information [55]. Further

extensions include semantic web service frameworks

[56] and general tools to create, edit and analyze

information about phenotypes without requiring

knowledge about the structure of the underlying

ontologies.
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Finally, reference databases and resources in bio-

medicine need to link to and contribute to the uni-

fying web of knowledge that is enabled by formal,

ontology-based phenotype descriptions. In particu-

lar, ontology-based phenotype descriptions for dis-

eases, as represented in databases such as OMIM or

Orphanet, need to be consistently linked to ontolo-

gies, and the phenotypes associated with diseases

completed and corrected where errors are detected.

FUTURE PROSPECTS
Currently, diseases in humans and model organisms

are described as the product of a set of constituent

phenotypes, or ‘endophenotypes’, ignoring the fre-

quency and co-occurrence of specific phenotype as-

pects of the disease: time, prognosis, molecular

signatures and therapeutic responsiveness. These are

important aspects of human disease and are in some

cases available for model organisms but not captured

in current curation practices as we lack a formal

model for disease. Approaches toward developing

such a model are being proposed currently [57, 58]

and it is clear that such developments will improve

the richness and accuracy of phenotype–disease de-

scriptions with concomitant improvement in the

power of informatics to detect similarities between

related diseases and subtypes within apparently uni-

form conditions.

Key Points

� Phenotype studies inmodel organisms are successful in revealing
genotype^phenotype relations and the molecular mechanisms
underlying human disease.

� Challenges for analyzing phenotype data include incomplete and
noisy information in databases describing model organisms and
human diseases.

� Approaches toward integrating phenotypes across species in-
clude ontology-based approaches and the direct comparison of
phenotypes.

� Biomedical ontologies and automated reasoning are a means to
integrate phenotypes across species.

� The combination of ontology- and similarity-based approaches
has been shown to successfully suggest novel genes for rare and
orphan diseases.
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